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Shear-flow instability at the interface between 
two viscous fluids 

By A. P. HOOPERt AND W. G. C. BOYD 
School of Mathematics, University of Bristol, Bristol BS8 1TW 

(Received 8 March 1982 and in revised form 27 October 1982) 

We consider the linear stability of the cocurrent flow of two fluids of different viscosity 
in an infinite region (the viscous analogue of the classical Kelvin-Helmholtz 
problem). Attention is confined to  the simplest case, Couette flow, and we solve the 
problem using both numerical and asymptotic techniques. We find that the flow is 
always unstable (in the absence of surface tension). The instability arises a t  the 
interface between the two fluids and occurs for short wavelengths, when viscosity 
rather than inertia is the dominant physical effect. 

1. Introduction 
When two fluids of different viscosities ,u1 and pUz are contained between two 

rigid plane-parallel boundaries, the interface being also plane and parallel to the 
boundaries and when the fluids are set in rectilinear motion, either by applied pressure 
gradient (Poiseuille flow), or by relative motion of the boundaries (Couette flow), a 
long-wavelength instability arises, which persists a t  arbitrarily small values of the 
Reynolds number (Yih 1967; Li 1969; Hickox 1971).$ This instability is associated 
with the jump in viscosity across the interface ; it  is not clear, however, from previous 
studies whether the presence of the rigid boundaries plays an essential role in this 
instability (as it does in the classical problem of the stability of plane Poiseuille flow 
of a homogeneous fluid - see e.g. Drazin & Reid (1981, chap. 4)). 

I n  this paper we examine the stability of the unbounded flow configuration, 
sketched in figure 1 ,  in,which the two fluids, identified by suffixes 1 and 2, occupy 
the half-spaces y‘ > 0 and y’ < 0, the velocity field being 

(a ,  Y’, 0,O) (Y’ > O), 

(a2 Y’, 0,O) (y’ < 01, 
u =  { 

where, by virtue of continuity of tangential stress, 

Pl a1 = Pz a,. 

In  this way we focus attention on any instability that is intrinsic to  the interface, 
and that does not depend on the presence of rigid boundaries. We shall find that the 
interface may be unstable to small-wavelength perturbations (although of course 
surface tension exerts a stabilizing influence). The analysis is relevant in a local sense 
to any situation in which a shear flow acts in the neighbourhood of a viscosity jump. 

t Present address: Department of Mathematics, University of Melbourne, Parkville, Victoria 
3052, Australia. 

$ The papers of Feldman (1957) and Tsahalis (1979) are also relevant; but these authors 
considered perturbations to the flow which do not perturb the interface, a severe restriction which 
limits the validity of their analyses. 

( 1 )  
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X’ 

FIGURE 1 .  The cocurrent flow of two fluids, each in uniform shearing motion. 

In  $2 we define the problem, and in $3  we present a heuristic analysis which focuses 
attention on the nature of the short-wavelength instability. In  $4, we obtain the exact 
dispersion relation for disturbances of arbitrary wavelength, for the particular case 
of equal densities (pl = pz)  and zero surface tension, and we solve this using numerical 
and asymptotic techniques. The results confirm the existence of a short-wavelength 
instability, and support the analysis of this instability presented in $3.  I n  $5  we 
discuss the mechanism by which energy drives the instability. 

2. Formulation of the problem 
We consider the temporal evolution of a small disturbance applied to the flow 

described in $ 1. The appropriate equations and boundary conditions are discussed 
in detail a t  the beginning of Yih’s (1967) paper. 

First, following Yih, we non-dimensionalize with respect to the lower fluid by 
defining the following dimensionless variables : 

t = a,t’. 12b) 
It is conventional in the literature to assume that the disturbance has X- and 

t-dependence of the form exp ( i a ( X -  Ct)), and thus derive the Orr-Sommerfeld 
equations for the stream functions in each fluid (cf. Yih 1967, equations (21), (2la)).  
For our purposes it is more convenient to measure length on the scale of the 
wavelength, and this is the lengthscale we shall use in the rest of the paper. 
Accordingly we define rescaled coordinates (x, y) and a rescaled phase speed c by 

(x,y) = a ( X ,  Y ) ,  c = aC. (3) 

We remark that the temporal growth rate of the disturbance is Im (c ) .  One thus finds 
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that  with x- and t-dependence of the form exp (i(z-ct)), the stream functions satisfy 
the Orr-Sommerfeld equations 

($ - 1)2$1 = i,a-2 m (my-.)($ 

($ - 1)2$2 = ia-2(y-c) -- 1 $h2 1 
for the upper and lower fluids respectively. I n  (4a)  

P1 a2 P1 

m = & = %  r = & ,  

Note that 2n/a is the ratio of the wavelength to the diffusion length (p2/p2a2)i.  
The boundary conditions at the interface of the fluids are that each component 

of velocity and stress is continuous. The form which these take in a problem such 
as ours is adequately discussed by Yih (1967) (see his equations (24), (26), (27), (30)). 
We require that on y = 0 

$1-42  = 0, ( 5 4  

(4; + $1) - m($I + $A = 0, ( 5 4  

a3S 
($7- 34;) -m($:- 34;) = ia-2m [ ( I  -+) (c$; + $2) - l--m (4; -$,)I. ( 5 4  

Our problem is thus, for any given real a, to find non-trivial solutions (or 
eigenfunctions) $j of the Orr-Sommerfeld equations (4a, b) subject to  the interface 
conditions ( 5 a d )  and to  the requirement that  $, tend to zero as y -+ co (i = 1 )  or 
- co (i = 2).  It suffices to consider only the case m < 1 ,  since if $(y, a, m, r ,  S) is an 
eigenfunction corresponding to the eigenvalue c ( a ,  m, r ,  S), i t  may readily be seen from 
(4) and ( 5 )  that  o r 8  1 1 ariS 

$* ( - Y , ; > ;, ; 7 ,) 
is also an eigenfunction, with corresponding eigenvalue 

where * denotes complex conjugate. 

3. A regular perturbation analysis of the unstable mode 
3.1. The perturbation scheme 

The form of the Orr-Sommerfeld equations (4a,  b) suggests that  as a -+ 00, that  is in 
the short-wave limit, there might exist solutions of the form 

c1 CZ 

a2 a4 
c = c,+ -+  -+... 

17-2 
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These solutions cannot be expected to be uniformly valid in y : indeed they may be 
expected to fail when IyI becomes comparable to, or larger than, a2. (The factors e-Y 
and e y  are not strictly essential to  our argument, but it is convenient to introduce 
them now: i t  turns out that  each an(y),  bn(y) ,  n = 0, 1 ,  2, 3, ..., is a polynomial of 
degree 2n+ 1 .) When the ansatz (6) is substituted into the differential equations and 
the boundary conditions, the result in each case is a descending power series in a-2, 
each coefficient of which must vanish. Thus we arrive a t  an iterative scheme whereby 
an(y) ,  b,(y), c, are found at each state in terms of the previously calculated iterates. 

Substitution of (6) in the Orr-Sommerfeld equations (4) yields the fourth-order 
differential equations 

where n = 0, 1,2 ,  ... . I n  this equation and in all subsequent work, functions with 
negative indices ( ~ ~ ( y )  etc.) are to be understood to be identically zero. 

Now consider the boundary conditions on y = 0. Continuity of normal velocity (5a) 
implies 

a,(O) = b,(O) (n = 0 , 1 , 2 ,  ...). 

Continuity of tangential velocity ( 5 b )  implies 

n 

s = o  
Z c,(a~-,(0)-b~~,(0)-2an-,(0))-(1-m)an(O) = 0 (a = O,1,2, ...). ( 8 b )  

From this equation, c, may be determined if all the previous iterates are known. 
(Continuity of tangential stress (5c) yields 

and continuity of normal stress (54  yields 

(a: (0) - 3 4 0 )  + 2an(0)) - m(b: (0) + 36:(0) - 2bn(0))  

(n = 0,1 ,2 ,  .. 

There is clearly a difficulty concerning the order of magnitude of the surface-tension 
term. The condition ( 8 4  is derived under the assumption that a3S = O(1) for large 
a. As we shall see, the iterative scheme works satisfactorily with the boundary 
condition (8d) .  If, however, one were to assume that a3S were larger than this, say 
a3X = O(a2) ,  then the surface-tension term in ( 8 d )  would involve a, and b, and one 
would quickly find that the method would fail, the failure manifesting itself in the 
appearance of a set of inconsistent linear equations. We shall return to this point later. 

Finally we consider the conditions at y = f co. Since we are requiring the stream 
function to  tend to zero there, we shall demand 

an(y)  = o(eY) (Y + a), (9a) 

b,(y) = o(e-Y) (y + -XI). ( 9 b )  



Shear-Jow instability at a Ju id  interface 51 1 

We remark that the perturbation method described above has some similarities 
with that given by Yih (1963) on a related problem (see his $§IV, V). 

3.2. Equal density and zero surface tension 
I n  the case to  be considered in this section we take r = 1 and S = 0. We study this 

somewhat artificial situation in some detail because the problem is then at its 
simplest. The analysis may be readily extended to more realistic situations, and we 
describe the result of doing so in 53.3. 

Setting n = 0 in the differential equations (7)  and taking account of (9a ,  b) ,  we find 
that the zeroth-order solutions are of the form 

ao(Y) = 0100 + a01 Y, 
bo(y) = P o 0  + Po1 Y 

for some constant coefficientsa,,, a,,, Po,, Pol. The boundary conditions (Sa ,  d )  -those 
associated with the continuity of normal velocity and normal stress - together imply 

a,, = Po, = 0. 

The boundary condition ( 8 c )  - the condition associated with the continuity of 
tangential stress - implies that  

aol + mPOl = 0. 

Let Pol = A,, an arbitrary constant. Then one finds 

ao(y) = -mA,y, bo(y) = Aoy. (10a, b)  

c,  = 0. (104 

Finally ( 8 b )  - the tangential velocity condition - implies 

This result implies nothing about the stability of the mode. 
Now we proceed to  the first-order analysis. The differential equations are 

a;"(y) -44(y) + 4ar(y) = 2im3A, y 

b p ( y )  + 4b;(y) + 4b;'(y) = 2iAo y (y < 0). 

al(y) = a lo+a l ly+~ im3Aoyz+~im3Aoy3 ,  

(y > O ) ,  

Thus we find 

b,(Y) = P l o + P 1 1 Y - ~ ~ ~ o Y 2 + w o Y 3  

a,, = p  --I - ,im( 1 - m) A,. 

for some coefficients ale, all, Plo, Pll. The boundary conditions (Sa, d )  imply 

The tangential-stress boundary condition ( 8 c )  implies that the remaining two 
coefficients satisfy 

This equation clearly has no unique solution; furthermore one can readily see that 
a t  each stage of the iteration the equations associated with the continuity of 
tangential stress will always have this property. We shall now turn aside from our 
discussion of the iterative scheme to discuss this difficulty. 

We can, in analogy with A,, introduce the arbitrary constant A,, so that the solution 
of (11) is 

Likewise, a t  the next stage of the iteration, one can introduce the arbitrary constant 
A,, so that PZl = A,. Such constants A,, A,, A,, .. . can be introduced a t  each stage of 

(11) a11+m/3,, = - & m ( m 2 - 4 ~ + 1 ) h 0 .  

= A,, all = -mAl-fim(m2-4m+l)Ao. 
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the iteration. It may be deduced from the linearity of the problem that the 
eigenfunction will be expressed as a linear combination of the arbitrary constants 
A,,A,,A,,  ..., and further that  each coefficient of A,,A,,A,, ... differs from its 
predecessor only by the factor a-, ; the eigenvalue is independent of the choice of 
A,, A,, A,, . . . . The arbitrary constants may be regarded as a consequence of the fact 
that any eigenfunction may be multiplied by an arbitrary function of a. 

Returning now to (ll), i t  is clear from the preceding discussion that the particular 
choice of solution has no great significance. We choose 

a,, = -+im(m2-2m)A0, pll = -4i(-2m+1)Ao, (12) 

so that we find 

al(y) = -&im( 1 - m) A,, -aim(m2 - am) hay +&n3h, y + him3& y3, (134 

b,(y) = - +im(i - m) A, -ai( - 2m + 1) A, ty++~,, y3. (13b) 

Finally we use the condition ( 8 b )  to  show 

m( 1 -my 

2(1 + m )  . 
c1 = i 

This last result implies that, for sufficiently large a, the mode is unstable for all values 
of m, other than m = 1 (corresponding to unbounded Couette flow of a single fluid), 
or m = 0. 

One may then proceed in a similar fashion to  calculate the higher-order approxi- 
mations to the eigenfunctions and thence to  the eigenvalues. One finds that the 
second-order correction to the eigenvalue is 

- m ( l  -m)  
c, = [5m4 + 1 2m3 - 2 0 ~ 2  + 1 2m + 51. 

16( 1 + m), 

The expression in square brackets is positive for all values of the ratio m. (For example 
i t  may be written as 5(1 -m)4+32m(m- 1),+ 14m2.) Thus c, is real, and is positive 
or negative according as m >< 1. 

From ( ~ O C ) ,  (13c),  (14): we deduce that 

.m(l-m)2 -, m(1-m) 
2 ( l + m )  16( 1 + m), 

C = 2  a -  (5m4+ 12m3-20m2+ 12m+5)a-4+O(a-6), (15) 

where, of course, the error term is merely a formal statement about the nature of 
the ansatz (6), and not in any sense a rigorous bound. The result we have just derived 
agrees satisfactorily with the separate numerical calculations of $4. 

3.3. Unequal density and non-zero surface tension, and further extensions 
The effect of unequal density ( r  =!= 1) changes the nature of the problem we have just 
discussed in two ways. First the right-hand side of the differential equation (7a)  now 
has l / r  factors (instead of unity), and secondly the first term on the right-hand side 
of the normal-stress condition ( 8 d )  no longer vanishes. The effect of non-zero surface 
tension manifests itself only in the normal-stress condition: now the second term in 
( 8 4  no longer vanishes. 

It is clear that  the iterative scheme will proceed successfully as before because the 
terms on the right-hand sides of (7a) and ( 8 b )  have each been obtained a t  previous 
stages of the iteration. At the zeroth-order level, the problem is unchanged from that 
considered in $3.2, and so we again recover results (1Oa-c). At the first-order level, 
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however, the differential equation (7a )  changes to the extent of a factor l / r  on the 
right-hand side. Working through the analysis, one finds 

. m( 1 - m) (1  - m2/r) 
21 1 + m)z 

m 
2(1+m)a3S. 

c1 = z -i 

Should one wish to do so, one may proceed to higher-order contributions, but the 
result (16) is sufficient to discuss the stability of the mode. We observe first that, as 
one expects, the effect of surface tension is always stabilizing for all values of m. Now 
consider the effect of density variation. To fix our ideas, suppose m < 1 ,  i.e. the lower 
fluid is the less viscous. Then if the lower fluid is the more dense ( r  > 1 )  the instability 
is reinforced by the density difference; if the lower fluid is the less dense then the 
density difference is a stabilizing influence and, in the absence of surface tension, will 
actually produce stability when r < m2. 

The asymptotic analysis is capable of extension in other directions. Hooper (1981) 
considers the effect of gravity (an external body force p i g  in the direction of negative 
y') .  She finds that co = 0 again, but now the term 

- - z  
2(1 +m) 

has to be added to the right-hand side of (16). 
A further significant extension of the results is possible when it is appreciated that 

in the short-wave limit, for the particular mode discussed in this part of the paper, 
the disturbance is localized in the neighbourhood of the interface, and that spatial 
variations occur on the scale of the wavelength. Now for sufficiently short waves, any 
parallel shear flow with velocity components (U,(y'), 0) ,  Ui(0) =k 0, is locally Couette 
near the interface. Thus we should expect very similar results to hold for any such 
flow. 

One can place the preceding argument on a more formal basis as follows. Let the 
flow field be (U&'),O), j = 1 or 2, and let U,(O) = U,(O). We again require 
continuity of tangential stress (l) ,  where now 

a, = U;(O), a2 = Ui(0 ) .  
Instead of (4), one now finds 

m 

( j i 2  ) r 
(-& -lyq51 = i,a-2(u1(y)-c) - - 1  q51-i-a-2u;(y)q51, 

m 

($ -1)2y12 = ia-Z(u,(y)--c) - - 1  y12-ia-";(y)y12, 
( i i 2  1 

where length and time are rescaled as before. I n  particular 

u j ( y )  = a(&): Uj(y ' )  when y = y' (i = 1,2) .  
a2 P2 

The interface conditions (5a-d) remain unchanged. 
Now uy(y)  measures the second derivative of the scaled velocity with respect to  y ,  

a variable which measures length on the scale of the very small wavelength of the 
disturbance. So unless the velocity profile is extraordinarily curved, i t  is reasonable 
to assume u;'(y) = O(a-'). Thus to the zeroth and first orders, the problem is the same 
as before, and so we again recover (13c). We remark that if one were to proceed to  
higher orders i t  would, in general, no longer be appropriate to seek the descending 
power series (6a-c) in powers of a2, but instead a descending power series in a. 
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4. The exact solution 
4.1. The secular equation 

The problem posed in 92 may alternatively be tackled by finding the exact form of 
the eigenfunctions. We restrict our attention to the case of equal density, though we 
allow the surface tension to be non-zero. 

Denote the vorticity of the disturbance in each fluid by wj(y) e i (x-c t ) ,  so that 

Then the Orr-Sommerfeld equations may be written 

d2wl 
~ -ima-2(my-c-im-1a2)wl = 0 (y > 0),  
dY2 

d2w, 
~- i a -2 (y -c - ia2)w2 = 0 (y < 0). 
dY2 

Equations (18)  have the respective solutions 

in y > 0 and y < 0, where Sj = in, in, or -in. The vorticity of the perturbed flow 
must tend to zero as y + f 00 ; this condition can only be satisfied if el = Qn, 8, = in. 
In  order that our notation be a simple as possible, we write 

Ai (a-$m$(y - m-lc - im-zaz) eioi), Ai (a-i((y - c - ia2) eiez) 

A,@) = Ai (a-%m~(y-mm-1c-im-2a2)e~i"), ( 1 9 4  

A,(y) = Ai(a-b(y-c-ia2)e@'). (19b)  

Thus wj  = bjAj(y) (i = 1 , 2 )  

for some constants bl,b,. With these expressions for the vorticity, the stream 
functions are found from ( 1  7 )  to be 

r--m 1 

for some constants a,, a2. 
When the results (20) are substituted into each of the boundary conditions ( 5 a 4 ) ,  

one finds four homogeneous linear equations for the four unknowns al,  a,, b,, b,; 
namely 

/ 1  - 1  
1 - I - -  m 

- 1 + ;  C 

2 - 2m 
iamS iamS 

2 -  - 2m- ~ 

1 -m l - m  

where J1 = 

Jl J 2  \ 

( l+>Jl  ( - 1 + t ) J ,  \ 
2J1 - 2A, -m( - 2J2 + 2A,) 

- 2J1 - 2A; 

amS 
1 -m 

m(2J, - 2 4 )  

+i- J ,  

i.) = o ,  

A .  = 
3 
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I n  order that  (21) have a non-trivial solution the determinant of the matrix must 
vanish: this yields the secular equation for the eigenvalue c .  After a considerable 
amount of manipulation, the secular equation can be shown to be 

where 
F(m,a ,c ,S )  = 0, (22)  

F = 4 ( 1 - m ) ~ ~ , ~ , + 2 ( 1 - - m ) m  + A ; ) J , + ~ ( I - ~ ) (  -A,+  - + A ; ) J ,  mA, 
C 

To within a multiplicative constant, the coefficients may be shown to be 
m(1 -m)  

a,  = (1 - m) J ,  J ,  - A ,  J ,  + 
2c 

a, = - ( f - m ) J , J , - m A 2 J , + -  
2c 

I m(l - m )  
2c b,  = - ( 1 - m ) J 2 - m A , -  A,, 

l - m  
b , = - ( l - m ) J , + A , + -  2c A, .  

The calculation whose results, (20)  and (22) ,  we have just reported may also be carried 
out when the densities of the fluids are unequal. 

4.2. Numerical solution of the secular equation 

We compute the Airy functions of complex argument that appear in (23) using an 
algorithm developed by Schulten, Anderson & Gordon (1979). We find the roots of 
the secular equation by searching €or the minima of IFI2 with respect to c for any given 
m, a and S. 

More specifically our strategy is the following: 
(i) fix the values of m, S and find the roots of the secular equation €or a 4 1 ; 
(ii) use the values of the roots found a t  the previous stage as starting values for 

a program in which, by increasing a by small steps, the manner in which each root 
varies with a is found for the fixed value of m ; 

(iii) when a becomes large, check that the numerical values of the roots thus found 
agree with the asymptotic results (which we shall derive in 54.3). 
Initially we take surface tension S to be zero. 

The asymptotic behaviour as a + 0 of (22) is found to be dominated by the term 

Thus as a .+ 0, the eigenvalues c are either such that 

c - -+(l-m), (25) 

or they satisfy A ; A , - A ; A ,  - 0. 

This last equation has an infinite number of solutions: the asymptotic behaviour 
of the Airy functions for large values of their arguments yields the approximate 
solutions 

c - ($nn - b - $i artanh-1 mi)! e-tin mi&, 

c - (inn - fn + &i artanh-' m:)f e-@" af 
(26a)  

126b) 
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n K+n(O) K-n(O) 

1 1.375- 1.31% -0604- 1-294i 
2 2.635 - 1-920i - 2585 - 2.0566 
3 3.645 - 2.44% - 3.980 - 2762i 

- 5 165 - 3.3926 4 4530 - 2.925i 
5 5.336 - 3.3673 - 6225 - 3'969i 

TABLE 1 .  The values of ~ ~ ~ ( 0 )  for various values 

for large positive integer n. Solutions of the type (26a)  are closely associated with 
the zeros of the Airy functions A,,  A ; :  those of the type (266) with A,, A;.  (These 
assertions are more convincing if one considers the dimensional form of the 
eigenfunctions.) Each of (26a,  b )  may be used as starting values in the numerical 
scheme used to determine zeros of F(m,  a, c ,  0). The form of (19a,  b )  strongly suggests 
making the change of scale 

K = a - k  

for the eigenvalue C. When this is done, one does indeed find values of K close to the 
approximate values in (%a, b) .  The predictions of (26)  are quite accurate even for 
small n. We denote the roots corresponding to (26a)  by ~ + , ( a )  and those corresponding 
to (26b) by ~ - ~ ( a )  (n  = 1 , 2 , 3 ,  ...). Values of K+, (O)  for m = 05 and n = 1 , 2 , 3  are 
shown in table 1 .  Note that the ordering of the K+,(O) and K - ~ ( O )  are such that, 
for each group of modes, the imaginary parts of the eigenvalues decrease with 
increasing n. 

One also finds a root of the secular equation corresponding to the approximate 
solution (25 ) :  we denote i t  by ~ ~ ( a ) .  The result (25)  yields information about only 
the real part of K ~ .  An estimate of the imaginary part can be obtained by direct 
asymptotic analysis, for a + 0, of the secular equation, or by application of the WKB 
method. Both methods yield the result 

Thus one expects that, as a + 0, the real part of K~ will be large (and negative for 
m < 1 )  while the imaginary part will tend to  zero through negative values. The 
numerical results quantitatively confirm these expectations. We remark for future 
reference that (27) is not uniformly valid near m = 0. 

Having found the values of K + ,  for n = 0 , 1 , 2 ,  ... when a = 0, we can proceed 
to calculate K*,(oL) as a increases& small steps. As a + 00 (which in practice means 
a greater than about 2 or 3) it is found that each mode settles into one of five types 
of behaviour. These are discussed in $4 .3 ;  here we list them. 

( 1 )  c - $m( 1 - m)2 (1 + m)-l a-2, the single unstable mode discussed in $3 .  
( 2 )  c - - i a2 /m+ esTi a, mi a$, where q = 1 ,  2 ,  3 ,  . . . . Here a, is the qth zero of the 

Airy function, Ai (a,) = 0;  there are an  infinite number of such zeros, all of which are 
real and negative: correspondingly there are an infinite number of such modes. 

( 3 )  c - - ia2 + eini a, a!, where q = 1 , 2 , 3 ,  . . . , so that there are an infinite number 
of such modes. 

(4 )  A single mode which is such that c - A, a2 for some complex constant A, ; c is 
not asymptotic to either - i a 2 / m  or - ia2. 

( 5 )  Another single mode which is such that c - h,a2 for some complex constant 
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0 < m < 0181 0181 < m < 023 023 < m < 1 

Group 1 K-1 K-2 KO 

Group 2 K+, (n 2 2) K+n (n 2 2) K+n ( n  2 2) 
Group 3 K-, (n 2 2) 
Group 4 K+1 K+1 K+1 

Group 5 K-2 K-1 K-1 

K ~ ,  K-, (n 2 3) K ~ ,  K-, (n 2 3 )  

TABLE 2. The correspondence between the behaviour of the modes as a + co and as a -+ 0 

Kn 2 3 4 5 6 7 8 

-10 

- 20 

-30 

FIQURE 2. The variation of Im ( K )  with a of the first seven modes when m = 0 5  (the K,, mode is 
barely visible on this scale). The points marked with x and denote values of -a+ and - d / m  
respectively. 

A, ; c is not asymptotic to either - ia2/m or -ia2, and one finds lA21 is much greater 
than IAJ. 
We shall refer to these as group 1 modes, group 2 modes, and so on. 

The numerical results we have obtained imply that, when m=0*181  or 0.23, 
mode-crossing occurs. The correspondence between the two asymptotic regimes is 
summarized in table 2. 

The numerical results we have found are well illustrated in figure 2, where Im ( K ~ , )  

for n = 0, 1 , 2  is plotted against a for the particular value m = 0 5 .  The results are 
typical of those obtained for m > 0.23. 

We were unable to compute values of K - l ( a )  for values of a greater than 0 5  for 
any values of the viscosity ratio m > 0.181. As is evident from figure 2, ImK-, 
dips sharply. The difficulty is that, even for relatively small values of a, the arguments 
of the Airy functions in the secular equation are large, and the computations become 
slow and inefficient. The same difficulty arises from m < 0181 in the computation 
of K-,(a). 
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FIGURE 3. (a )  The marginal stability curves for different values of the surface tension S. The shaded 
area denotes the region of instability when S = 0 5 .  The regions of instability for the other values 
of S are analogous and may be readily envisaged. Note the singular nature of the marginal stability 
curve when S = 0. (5) The plotted curves represent, for specific values of the surface tension S ,  the 
maximum growth rate of the instability as a function of m. 

The mode that is of physical interest is the unstable mode - the group 1 mode. The 
properties of this mode are conveniently summarized in figures 3(a, b )  for various 
values of the surface tension S. There are difficulties associated with each of the limits 
m --+ 1 and m + 0, which we now discuss. 

As m + 1 when S = 0, it is clear from the marginal stability curve 3(a) that 
instability is eventually present for all wavenumbers other than a = 0. When m = 1, 
however, the flow is unbounded Couette flow of a single fluid, a flow that is always 
stable (Marcus & Press 1977). Reference to figure 3(b) resolves the paradox: the 
maximum growth rate of the instability tends to zero as m --+ 1. 

We were unable to plot the graphs of figures 3(a, b )  for small values of m because 
the numerical calculations were then inefficient. Some progress can be made by 
allowing m -+ 0 and assuming c = O(m) in the secular equation (22) .  When account 
is taken of surface tension this yields, to leading order, 

with c = 0 in the definitions of the functions on the right-hand side. The requirement 
that the right-hand side of (28) be real yields a value of a for any given non-zero S ,  
namely the value of a a t  which the upper branch of the marginal stability curve 
intersects the m = 0 axis. For the values of S shown in figure 3 (a) one finds a = 2.121 
(S = 0.1) and a = 1.181 (S = 0.5). More detailed information about the behaviour 
of the marginal stability curve near m = 0 can obviously be obtained by considering 
higher-order terms in (28). 
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The formula (28) yields no information about the lower branches of the marginal 
stability curves as m + 0. The reason for the failure is that, on the lower branches, 
a and m are small simultaneously, and (28) is not uniformly valid for small a. We 
infer from (27) and (28), however, that  the lower branches of the marginal stability 
curves cannot pass through the a-axis or m-axis except a t  the origin. It may be that 
a more complicated analysis in the simultaneous limits a+0, m+O will yield 
more satisfactory results. 

4.3. Asymptotic behaviour as a + co 
We again consider only the case S = 0. 

To find the asymptotic behaviour as a + 00 of the eigenvalues c (the solutions of 
the secular equation F(m,a ,c ,O)  = 0) one first finds the asymptotic expansion of 
F(m, a ,  c ,  0) as a + 00, F - G(m,  a ,  c )  say, and then solves G(m, a, c) = 0. A difficulty 
immediately manifests itself when one attempts to find G: it is that  the asymptotic 
behaviour of F ( m ,  a ,  c, 0) as a -+ 00 depends on the value of c-which we are trying 
to find. Thus consider the term A, which occurs in (22), i.e. 

Ai ( d ( c  + iaZ)-kni). (29) 

The Airy function has the asymptotic expansion 

Ai ( z )  = $ d z - t  exp ( -@) (1  + O(z-9)) 

as IzI + co, where larg 21 < m (Abramowitz & Stegun 1965, 10.4.59) ; there is a different 
asymptotic expansion valid as IzI + co in domains which include the negative real 
axis (Abramowitz and Stegun (1965), 10.4.60); if IzI is not large, no simplification is 
possible at all. Define 

(31a) 

Then, depending on the value taken by 6 ,  (and so, by implication, c), each of these 
three regimes occurs for the Airy function given in (29). 

e, = a-f(c  + iaz) e-@. 

Similar remarks apply to A; and to A,,  A;  when one defines 

The same difficulty manifests itself for the integrals that occur in (23). Thus 
consider J,: a simple change of variable yields 

J2 = a! jomexp [-ah] Ai ( e d t  w + e,)dw. 

Now if e2 = 0(1) as a + co, then, because the Airy function is slowly varying in a 
neighbourhood of the end-point of integration w = 0 and is bounded outside the 
neighbourhood, it follows from Watson's lemma (Olver 1974, p. 112) that  

J ,  N Ai (e,) = A,.  (33) 

If, however, le,l becomes large as a -+ co, then the Airy function in (32) is rapidly 
varying near the point of integration w = 0, and a different asymptotic analysis is 
now appropriate: the Airy function is replaced by its asymptotic expansion (30), and 
the resulting integral is evaluated asymptotically. Rather than perform the calculation 
in this way, we first, by making a change of variable, express J ,  in the form 
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Now use (30) to expand the Airy function in the integrand. This can only be done 
if as] Wl is always large in the integrand, and so we require le21 9 1 .  In  addition we 
cannot allow the path of integration in the complex W-plane to cross the line 
arg W = -in, since the asymptotic expansion (30) for the Airy functions fails to be 
valid near there. When (30) is used in (34) we find 

where -b < arg W < ~. It may be shown that the argument of the exponential in 
(35) has no stationary points, and so, provided that the contour is a path of descent, 
Watson's lemma implies that the asymptotic expansion of the integral consists 
entirely of contributions from the endpoint of integration. By considering the 
conformal transformation W --+ W +$e-@ m, one can indeed show that a contour can 
always be chosen to be a path of descent provided that Je21 9 1 and large,l < n. Thus 
one finds from (35) 

Now since 1e.J is large and large21 < 77, this result may alternatively be written 

where 

"-[l+(l-i>y]l ,  A2 

In  summary, J ,  has the asymptotic expansion (33) when e2 = O(1) and (36) when 
1e21 4 1 .  Reid (1979) has derived a uniformly valid (and rather more complicated) 
expansion for an integral such as (34): however, we do not require such a general 
result. For the integral J,, one may similarly deduce the results 

when 

and 

where 

5- [ 1 +( 1 - i?Y]l, 
A 

7T 

when lell % 1.  
It is clear from the preceding discussion that we must make a priori assumptions 

about the asymptotic behaviour of c as a + co if we are to make progress with the 
asymptotic analysis. We consider four specific regimes; namely, that as a --+ co 

(a )  c / a 2  = o( l ) ,  
( b )  C / U Z  'v -i, 
( c )  c /a2  'v -im-l, 
( d )  c / a 2  - h for some constant h += --i or -im-l. 

We do not claim that these assumptions represent the only conceivable asymptotic 
behaviour of the eigenvalues c ,  merely that these are regimes in which one does find 
eigenvalues, and that moreover each of the numerically computed eigenvalues found 
by the methods discussed in $4.2 corresponds, as a + CO, to an eigenvalue in one of 
the asymptotic regimes (u)-(d). 
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It is found to be more convenient to consider the secular equation (22)  in the 
following form : 

4(1-m)2-- J l  J ,  +2(1-m) 
A1 A,  

+2(i-m) -I+-+-’ A’) -+m J 2  ( 2+-  1;m)( t ;  --- ti) = o .  (39) ( c A ,  A ,  

It may be seen that there are four functions whose asymptotic expansions we require, 
namely 

J ,  J ,  A; A; 
A,’ A , ’  A , ’  A , ’  
- - - -  

We have found expansions for the first two of these in (33), (36)-(38). The asymptotic 
expansions of the Airy function and its derivative (Abramowitz & Stegun 1965, 
10.4.59, 10.4.61) show that the latter two have asymptotic expansions 

2n 
A2 3 

a s a - + o o .  
(a )  c/a2 = o(1). We find, from (36), (38), (40a, b )  that in this case 

If one multiplies through the secular equation (39) by c and uses these results, one 
finds, to  within the order of approximation implicit in (41), 

c = 0. (42) 
To improve on this result one has to find higher-order terms in the four asymptotic 
expansions of (41). Thus one finds 

imc im2 - _ -  A’ - 1 + - - - +o(a-2), 
A1 2a2 4a2 

A;  i C  i 
- 1 - - - - +o(a-,), _ -  

A ,  2a2 4a2 

when, as we are assuming, c = o(a2). To find higher-order terms in the asymptotic 
expansion of J 2 ,  consider (35) again, but now with higher-order terms in the 
integrand. Then use Watson’s lemma again to arrive at the result 

ic i 
-;+-+-+o - . J 2  

A2 8012 8a2 (of.) _ -  

Similarly one finds J l  imc im2 

When (43u-d) are used, one finds, instead of (42), 
c 1-m2 
a, m 

c ( - ( 1  +m)z+0(a-2)) = +im(l-m)2(l+m)a-2-#i-- + 0 ( a - 2 ) .  

1434 

and so .m(l-m)2 -, 
2(1+m) a 

c - a  (44) 
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This is the same result as we derived in $ 3  by a different method (13c)). It describes 
the asymptotic behaviour of the eigenvalue of the group 1 mode of table 2.  

( b )  c / a z  - -i. We again have to  find the appropriate asymptotic expansions for 
the functions that appear in the secular equation (39). From (38) we find 

JJA, N [l+(l+m)i]-',  

from (33) J,/4 - 1 ,  

from (40a) A;/A, - - (1  + m);, 

while AL/A2 cannot be approximated a t  all in this regime. Thus the secular equation 
reduces to 

A; ( 1  -m)t (m2 -2m+ 2) - 2( 1 - m)2 
- N  

A2 m(l-2m-(1 -m)$) 

c - -iio12+e~"daqcz-% (q = 1,2 ,3 ,  ...), (45 ) 

Now as CL + a, one will find solutions of this equation close to the values of c for 
which A, is zero; i.e. 

where a, is the qth zero of the Airy function Ai. It is well known that all the zeros 
are real and negative. They are tabulated in Abramowitz & Stegun (1965, table 10.13). 
The results (45) describe the asymptotic behaviour of the eigenvalues of the group 
3 modes of table 2. 

( c )  c / a z  - -im- l .  This case is entirely analogous to  that just discussed. Instead 
of (45), one finds 

(46) 
a2 

c - -i-+e~"ia,ct~m-~ (q = 1,2 ,3 ,  ...). 
rn> 

These results describe the asymptotic behaviour of the eigenvalues in the group 2 
modes of table 2 .  

( d )  c / a z  - h ( + -i, -im-l). I n  this regime we use the asymptotic results (361, (38), 
(40a, b )  to approximate the functions that appear in the secular equation. The results 
(36) and (38) may alternatively be written 

n 
N - i  , where - - <  arg - Jl 

A1 mc 3 

2n 
, where - - 

3 
N - *  - J, 

A2 
One thus finds, to  the order of approximation implicit in these asymptotic results, 
that the secular equation to determine c becomes 

Repeated squaring of (48) yields 

y6 - 8( 1 + m )  y5 + 16(2 +m+ 2m2) y4--8( 1 + m) (9m2- 10m + 9)y3 

+ 16(1+ m)' (6m2- 1 l m  + 6) 7'- 64( 1 - m)' (1  +wL)~ y+ 16(1 -m)2 (1 + ~ 2 ) ~  = 0, 
(49) 
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m Root 1 Root 2 

0 1  -0385 - i7.595 15.4 -i29.29 
0 4  - 0.1 89 - i2.266 2.561 -i11.354 
0 5  - 0.1 59 - i1.899 1.707 - i9.994 
0 6  - 0 129 - i1.65 1 1.138-i8954 
0 9  - 0032 - i1.241 0.170 - i7.201 

TABLE 3. The roots c / a z  of (48) for different values of m 

where y = imc/a2. Equation (49) has six roots, but i t  is found that for all m only two 
of these roots satisfy (48). The values of c / a 2  for various m corresponding to these 
two roots are listed in table 3. The group 4 and 5 modes of table 2 correspond 
respectively to roots 1 and 2 of table 3. 

Except for the eigenvalue corresponding to the root 2 solution in table 3, we found 
satisfactory agreement as a increases between the asymptotic estimates (44), (45), 
(46), table 3, and the previously computed numerical results (see table 4).  

For the root 2 solution in table 3, we found only qualitative agreement. For 
example for m = 0.5 and a = 0.4 our numerical results yielded c = 0.0616-i1-3984 
in the K - ~  mode, and the root-finding procedure was very inefficient; the asymptotic 
estimate root 2 in table 3 implies c = 0.273-i1.599. However, the agreement seems 
good enough for us to identify the modes as the same. 

Consider now the asymptotic behaviour of the eigenfunctions. The results 
derived earlier in this section show that, when the eigenvalues have the asymptotic 
behaviour (44), the coefficients a, and b, of (23) are such that as a -+ 00 

a, - - iA ,  A ,  l + m  a', b,  - iA2- l+ma2 
2(1-m) 1-m 

Next, if one considers its asymptotic expansion, one may show that the Airy function 
that appears in the integrand of (23) is such that when c / a 2  = o(1) 

A,(z )  - ecZAl 

as a + co, provided that z / a 2  + 1 .  One may legitimately use this result in (23), 
provided that y / a 2  4 1 .  When this is done, one finds 

fil - i A l A 2 -  l + m  a 2 y e - y .  
1-m 

Similarly one may show that, provided that --/a2 4 1,  

fi2 N - i A ,  A ,  l + m  a 2 y e y .  
m(l  -m) 

These results agree with (lOa, b) ,  the zeroth-order eigenfunction found in $3 .  Their 
derivation implies that  (lOa, b )  and higher-order corrections are valid for IyI 4 a,, 
a result that one expects because of the form of the right-hand sides of the 
Orr-Sommerfeld equations (4a, b) .  

Finally, we consider the .eigenfunctions whose eigenvalues have the asymptotic 
behaviour (35) or (36). Each of these is essentially the same, and we direct our 
attention to  ( 3 5 ) .  In  such modes, A,  and J ,  vanish to leading order, while A ,  and 
J ,  do not. On using the representation (19) one therefore finds that to leading order 
fi, is zero and fi2 is not, that is the upper fluid is not perturbed and the lower fluid 
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a 
1 
2 
3 
4 
5 
6 
7 

a 

1 
2 
3 
4 
5 
6 
7 

a 

1 
2 
3 
4 
5 
6 
7 

a 

1 
2 
3 
4 
5 
6 
7 

K,, the unstable mode 
Asymptotic 

0041 67 
0006 562 
0002 226 
0001 033 
0000 570 
0000 351 
0000 232 

Asymptotic 
K - ~  mode 

- 2.169 1 
- 36890 
- 3.495 9 
-85187 
-97189 
- 12.071 8 
- 145596 

K + ~  mode 
Asymptotic 

- 2,927 9 
- 5967 9 
-95814 
- 13.627 0 
- 180276 
- 22.733 3 
- 27.7089 

K + ~  mode 
Asymptotic 

- 1.899 
-4'785 
-8216 
- 12'058 
- 16236 
- 20704 
- 25429 

Numerical 

0022 138 
0005 925 
0002 17 1 
0001 025 
0000568 
0000350 
0000232 

Numerical 

- 2.455 8 
- 3.854 2 
- 5.589 8 
- 8575 7 
-97570 
- 12.0989 
- 14'5820 

Numerical 

- 3'548 9 
- 6.41 2 7 
- 9949 1 
- 13.947 2 
- 18.3240 
- 22.994 1 
-27.9492 

Numerical 

- 2265 
- 5292 
-8.613 
- 12.388 
- 16.523 
- 20959 
- 25.659 

TABLE 4. Comparison between the asymptotic and numerical results 
for Im ~ ~ ( a )  as a increases; in each case m = 05 

is. Thus, asymptotically as a -+ 00, the upper fluid behaves like a solid and the 
perturbed flow in the lower fluid is that of one of the modes associated with 
perturbation of the Couette flow of a semi-infinite fluid in the presence of a solid 
boundary. The analogous situation obtains for the other class of eigenfunctions, those 
whose eigenvalues have the asymptotic behaviour (36). 

5. The energy equation for the unstable mode 
It is now clear from the results of $4 that the mode considered in $3  is the only 

unstable mode, and further that the instability only occurs for sufficiently short 
wavelength. Thus in discussing the nature of the instability, it  is appropriate to 
confine our attention to the asymptotic behaviour as 01 -+ co of the particular mode 
studied in $3. 
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A direct and simple explanation of the instability we have found would be of great 
value, since the instability mechanism might well be the same as that appearing in 
other, and perhaps mathematically less tractable, problems. We have been unable 
to find a mechanism that provides such a simple and direct insight. However, energy 
considerations do provide some insight into the nature of the instability. 

If one forms the scalar product of (ul,vl) with the terms of the linearized 
Navier-Stokes equations for the upper fluid, and integrates over the upper fluid, one 
obtains 

= - [ul Ti’$ + v1 T&Iu - dx (50) 

(cf. Batchelor 1967, 53.4). This is the energy equation for the upper fluid. Here u, 
and v1 are the dimensionless velocity components of the disturbance, while Ti:) and 
Ti;) are components of the stress tensor of the perturbed flow in the upper fluid: 

p ,  denoting dimensionless pressure. The symbol el;) in (50) denotes the rate-of-strain 
tensor of the perturbed flow (which can be derived formally from the expressions for 
the stress tensor in (51) by setting p ,  = 0,  2a2r/m = 1). The three terms in the 
integrand on the left-hand side of (50) represent respectively the material rate of 
change of the kinetic energy of the perturbed flow, the rate a t  which the Reynolds 
stress is transferring energy between the basic flow and the perturbed flow, and the 
rate of viscous dissipation of the perturbed flow. The expression on the right-hand 
side represents the rate a t  which the disturbed flow in y > 0 is being supplied with 
energy at  its boundary y = 0. Likewise one finds 

J 
dx 

(52) 
where el;) and Ti;) are respectively the rate-of-strain and stress tensors of the 
perturbed flow in the lower fluid. The components of the stress tensor are 

((it -+y-  a ) r l + v f  - + u, v, + 2a2eif) e l f ) )  dx dy = [u2 Ti:) + v, Ti?$], 
lower fluid ax 2 - m  

(53 c) 
av 
aY 

Ti:) = - p ,  + 2a2 2 . 

When (50) and (52) are added together one finds that the right-hand sides combine 
to yield m 

(54) 
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(Note that tangential and normal stress, and normal velocity, are continuous a t  the 
interface.) One thus deduces that the sum of the material rate of change of kinetic 
energy and the rate of viscous dissipation in the perturbed flow throughout the fluids 
is balanced by the sum of the rate a t  which the Reynolds stresses transfer energy 
from the basic flow to the perturbed flow throughout the fluids and the contribution 
(54). This latter expression must therefore represent the transfer of energy from the 
basic flow to the perturbed flow a t  the interface. 

Since the quantities that  occur in the energy equation can be expressed as 
descending power series in a2, ao, a-2,  a-4, . . . , i t  follows that one can write down 
equations describing the energy balance a t  different levels of approximation. 

There are only two terms in the energy equation that results from considering the 
coefficient of a2: the viscous dissipation of the zeroth-order perturbed flow and the 
rate of working of the surface stresses a t  zeroth order. From the results of $3  one 
finds that the leading contribution to (54) as a + co is 

m 

Re[(bl,-ah+2ao)ei”] Re [(b,”+2bh+2bo) ei5]dx, 

i.e. m 
Aia2( 1 + m) jPm cos2 x ds.  

This last integral of course diverges, but one may infer from i t  the rate of working 
per wavelength, namely nhia2( 1 + m).  (55) 

It may be verified directly that this quantity is also the total rate of viscous 
dissipation of the zeroth-order flow in both fluids. Clearly, therefore, the energy that 
drives the instability must arise in the higher-order terms. 

The next terms to be considered are those that multiply ao. One finds that they 
all vanish when integrated over x. 

We then proceed to  those terms in the energy equation that multiply a-2. It is 
found that to the rate of working of the surface stresses per wavelength found in (55) 
one has to add 

1 lm6 + 51m5 - 1 12m3 + 51m + 11 
nil; a-2 

16(1+m) 
(which is always positive). In  addition, the Reynolds stresses supply energy to the 
perturbed flow at the rate 

n h ; a : - 2 ~ 3 ( - ( 1 - , j - ~ 2 y 2 - ~ 2 Y 3 ) e - - 2 y  (y  > o), (57 4 
nhia-2i(m(l - m ) - ! 9 ~ ~ + + y ~ ) e ~ y  ( y  < 0 )  (57b) 

per wavelength. We see from (57a) that  the energy transfer is stabilizing for all y 
in the more-viscous fluid (i.e. the Reynolds stress transfers energy out of the 
perturbed flow). I n  the less-viscous fluid the energy transfer is destabilizing near the 
interface but is stabilizing far from the interface. When (57a, b )  are integrated over 
both fluids we find that the rate of transfer of energy to the perturbed flow is 

- n h ; ~ - ~  +( 1 - 2m + 2m2 + 2m3 - 2m4 + m5) (58) 
per wavelength. This is always negative (the terms in the brackets may be written 
in the form ( ( l - m ) 2 + m 2 + m 3 + m 3 ( l - m ) 2 ) .  It is clear from (56) and (58) that  the 
energy transfer a t  the interface is essential in driving the instability. 

The analysis we have just described may also be applied to the case of two fluids 
of uneyual density and non-zero surface tension. The conclusions are qualitatively 
the same. 
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6.  Conclusion 
We have shown that the unbounded Couette flow of two viscous fluids of equal 

density and zero surface tension is always unstable. The instability occurs at the 
interface of the two fluids and manifests itself in the high-viscosity regime (that is, 
the disturbance occurs on a lengthscale of the order of, or smaller than, the lengthscale 
associated with the diffusion of momentum or vorticity). From this i t  follows that 
the same instability accurs at the interface of the fluids in any shear flow. Surface 
tension is always stabilizing ; difference in density may be stabilizing or destabilizing. 
Energy considerations show that the instability is essentially created in the immediate 
neighbourhood of the interface and in the less-viscous fluid near the interface. 

The typical growth rate associated with the instability is comparatively slow, and 
seems to be sensitive to  comparatively low values of surface tension. It seems likely 
that this is why i t  has not been observed experimentally. The most relevant 
experimental work we have found is that of Charles'& Lilleleht (1965) and Kao & 
Park (1972). Both studies were of cocurrent laminar Poiseuille flow of oil and water 
in a rectangular channel. The instabilities they reported do not seem to arise at the 
interface : instead the interface deforms in response to instabilities that  arise 
elsew here. 

Finally, we remark that the more general case of two-fluid plane Couette flow in 
a channel may be tackled by the same methods. We have given this some 
consideration : the methods are capable of straightforward extension to this problem, 
but the analysis is inordinately complicated. 

We have had many useful discussions with colleagues and visitors a t  the University 
of Bristol: to all of them we give our t,hanks. I n  particular we wish to thank Professor 
H. K. Moffatt for suggesting this problem and for his advice and encouragement, and 
Professor P. G. Drazin for his many helpful comments. We also wish to thank the 
referees for their remarks: these enabled us to improve the presentation of the paper. 
One of us (A. P. H) was supported by the Department of Education, Northern Ireland, 
while this research was undertaken. 
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